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ABSTRACT 

We introduce techniques that  allow us to embed below an arbi tary 

nonlow2 recursively enumerable degree any lattice currently known to 

be embeddable into the recursively enumerable degrees. 

1. I n t r o d u c t i o n  

One of the most basic and important  questions concerning the structure of the 

upper semilattice R of recursively enumerable degrees is the embedding question: 
which (finite) lattices can be embedded as lattices into R?  This question has a 
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long and rich history. After the proof of the density theorem by Sacks [31], Shoen- 

field [32] made a conjecture, one consequence of which would be that no lattice 

embeddings into R were possible. Lachlan [21] and Yates [40] independently re- 

futed Shoenfield's conjecture by proving that the 4 element boolean algebra could 

be embedded into R (even preserving 0). Using a little lattice representation the- 

ory, this result was subsequently extended by Lachlan-Lerman-Thomason [38], 

[36] who proved that all countable distributive lattices could be embedded (pre- 

serving 0) into R. This last result pushed the Lachlan-Yates techniques to the 

limit since any embedding using their "minimal pair" method was, by necessity, 

distributive. 

Lachlan [22] introduced some far more complex techniques which allowed one 

to embed the basic nondistributive lattices M5 and N5 of Figure 1. 

N s M s 

Fig. 1. Basic nondistributive lattices. 

All of these successes tended to support the hypothesis that all lattices could 

be embedded into R. Lerman, however, suggested that the lattice Ss of Figure 

2 could not be embedded (see Lerman [29]). 

Sa 

Fig. 2. A nonembeddable lattice. 

Lerman's intuition turned out to be quite sharp: Lachlan and Soare [24] proved 

that in fact Ss is not embeddable into R. These embedding/nonembedding 

results have been pushed quite a bit; the current state of affairs can be found in 
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Ambos-Spies and Lerman [4], [5], where sufficient conditions are given for both 

embeddability and nonembeddability. 

Another direction in lattice embedding questions was to look at fragments of 

R. Lachlan [23] proved that  the diamond lattice could not be embedded into 

every initial segment of R preserving 0. On the other hand, Slaman [35] proved 

that the diamond lattice could be embedded into all nontrivial intervals of i t ,  

and again this result was extended to countable distributive lattices by Downey 

[10] and Ambos-Spies, Lempp and Soare. But here there is a difference from 

it .  While N5 can be embedded into all nontrivial intervals (Ambos-Spies in [2], 

[11]), M5 cannot be embedded into all nontrivial initial segments Downey [11]. 

In fact, Cholak and Downey [6] have proven that  if a < b then there is a c with 

a < c < b such that Ms cannot be embedded into [a, c]. Similar work has been 

done on embeddings preserving 1 (see Ambos-Spies, Decheng and Fejer [1]). 

The present paper grew from an attempt to understand how the Turing jump 

operator relates to lattice embeddings. In particular, we look at the nonlow2 

recursively enumerable degrees. Recall that a degree a is called low2 if a" = 0". 

For the global degrees, it is known (Fejer [18]) that any finite lattice can be em- 

bedded below a nonlow2 (in fact non-GL2) degree. Also for strong reducibilities, 

it is known that  "low2-ness" has strong reflections in the degree structures. For 

instance, Downey and Shore [14] proved that an r.e. tt-degree a is low2 iff a has 

a minimal cover in the r.e. tt-degrees, and hence the low2 r.e. tt-degrees are 

definable in the r.e. tt-degrees. 

In the present paper we introduce a new technique that enables one to embed 

lattices into the recursively enumerable degrees below an arbitrary recursively 

enumerable nonlow2 degree. We believe that  the technique is sufficiently flexible 

to enable one to embed, below an arbitrary nonlow2 degree, any lattice currently 

known to be embeddable into it .  We conjecture that  

(1.1): I f  L is embeddable into R then L is embeddable below any nonlow2 

recursively enumerable degree. 

We remark that  we cannot add "preserving 0" to (1.1) since it is known that  

there is a high2 r.e. degree not bounding a minimal pair (Downey-Lempp-Shore 

[12]). 

In this paper we will prove (1.1) for the lattice Ms. We remark that Ms 

occupies a central role in all major embedding conjectures. This is because 
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al,a2,a3 in M5 form what is called, following Downey [11], a cr i t ical  t r iple.  

That is, a lUa2  ---- a2Ua3 and a l N a  3 _~a 2. For instance, it is conjectured that  L is 

embeddable into all nontrivial intervals iff L contains no critical triples (Downey 

[11]). A similar conjecture has been made concerning the embedding conjecture 

(namely L is embeddable into R iff L has no pair "infing into a critical triple"). 

The point about critical triples is that they seem to need the complex 

"continuous tracing" technique of Lachlan [22] and this interferes with both 

permitting and the delicate minimal pair machinery (which is why Ss is not 

embeddable). However, the intuition is that if b is "sufficiently high" then b 

will provide enough permissions. Indeed it is relatively easy to see that  if b is 

high then one can embed M5 below b preserving 0 via Lerman's pinball method. 

(This result is proved in another style in Weinstein [39]. Another approach to 

high permitting can be found in Shore-Slaman [34]). Our main construction 

proves that  two jumps is enough. If b is nonlow2 then M5 is embeddable into 

[0, b]. 

We remark that  while we have not checked that all the lattices of Ambos Spies 

and Lerman [5] are embeddable via our technique, the method is sufficiently 

generic to seem to apply to those lattices, and M5 is only used as a representative 

example. 

One might have hoped to generate a definition of low2 via our result, par- 

ticularly in view of our results for tt-degrees [15]. It might seem reasonable to 

suggest that  if a < b and b "sufficiently high over a" one should be able to embed 

a critical triple in [a, b]. However we have not even be able to prove that if a 

is low then one can embed 1-3-1 above a. In Cholak-Downey-Shore [7] in fact 

it is shown that  such an embedding cannot be done uniformly, and furthermore 

there is a low2 recursively enumerable degree a for which one cannot embed a 

critical triple either above or below a. Incidentally this result establishes that 

our result is the best posible in terms of the jump operator: one jump is not 

enough to embed 1-3-1 below a degree. [This can also be proven by combin- 

ing the nonbounding construction of [11] with the construction form [15] of a 

promptly simple completely mitotic r.e. degree.] 

The organization of the paper is as follows. In w we review the Lerman-style 

[28] pinball embedding of M5 along the lines of Stob [37]. In w we prove how 

to incorporate "nonlow2-permitting" to get the argument below an arbitrary 

nonlow2 degree. 
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Notation is standard and follows Soare [36]. We let all computations etc. be 

bounded by s at stage s and A[x] -- {YlY <- x & y �9 A} .  

2. Embedding M5 

In this section we prove Lachlan's result [22] that M5 is embeddable into R. We 

follow Lerman's pinball [28] approach, along the lines of some old notes of Stob 

[37]. We present this (a) as an aid for the more complex arguments to follow, 

and (b) because there is no presentation of a pinball proof of Lachlan's result in 

the literature, and we think there should be, as the proof clearly demonstrates 

the power of the technique. 

2.1 THEOREM (Lachlan [22]): There exist non-zero r.e. degrees a l ,  al,  and a 3 

such that  ao U a 1 = a 1 LJ a2 ---- a2 L_J a 3 and, for all i 7 ~ j ,  al  N a i = O. 

Proo~ (Stob [37], after Lerman [28]) We construct r.e. sets Ai with deg(Ai) =ai  

to realize the required properties. 

We use the pinball machine of Figure 3. 

Track 

Corral 
C. 

Gate Go 

Pockets 

A1 A 2 A~ 

Fig. 3. The pinball machine. 

In addition to the procedures to produce the desired ordering of the degrees 

that  we discuss below, we must meet the following requirements: 

P~,i: (I)~ r Ai (i e {0, 1, 2}, e �9 w). 

Ne,i,j : r  = g2e(Aj) = f total implies f recursive(i,j  �9 {0,1,2},i  r 

j , e � 9  
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We associate hole H(e,~) with P~,i and gate G<~,i,j> with N~,i,j. As usual there 

will be various auxiliary functions: 

g(e, i, j ,  s) = max{x: Vy < x[O~,8(Ai,~; y) = O~,~(Aj,~; y)}. 

rng(e, i, j ,  s) = max{0, t(e, i, j ,  t): t < s}. 

In general the motion of a ball is down.  Balls may be follower balls (which are 

emitted from holes), or trace balls. A follower can have many traces. We denote 

i This notation indicates that  x is targeted for Ai for follower balls by x = x~, n. 

the sake of requirement Pe,i and is our n th attempt at satisfying P~,i. Otherwise, 

a ball is of the form t~,i,m(X ) which indicates it is targeted for Aj and is the m th 
trace of the t r a c e  en tou rage :  

(2.3) i ~Jl t J2 J~ Xe,n'  ~e,i,l ' e,i,2' " " '  te,i,m" 

When the meaning is clear, we shall drop some of the subscripts. 

Note that  since for all i ~t j r k, we must guarantee that 

(2.4) Ai (_~T Aj @ Ak, 

we are committed to coding Ai into Aj ~ Ak. This is what the traces are used 

for. The underlying idea is that  if y enters the set Ai for which it is targeted, 

then y is either a trace or a follower. We promise that  either y enters Ai by stage 

y +  1, or y will have a trace. If y is targeted for A~ then y's trace will be targeted 

for Aj or Ak. Thus in the entourage (2.3), i fp  < q then tq must enter its target 

set before, or at the same stage as tq. If tq enters then either tq-1 also enters, or 

tq-1 gets a new trace at the next stage. In this way we work to insure (2.4). 

The priority of a ball is the same as that  of the follower in its entourage. The 

priority of a follower is a pair consisting of first the requirement it follows, and 

second the order of appointment so that x,~ has higher priority than xm if n < m. 

(The priority ordering is the lexicographic ordering of pairs.) Finally, the sur face  

of the machine is defined to be the section not including the pockets, and the 

t r a c k  is the section of the surface not including corrals or holes. 

The key observation of Lachlan was that  a requirement Ne,i,j is only concerned 

with entry of elements into both Ai and Aj between expansionary stages (we 

assume that  the reader is familiar with the minimal pair technique as in Soare 

[36]). How could that happen? Thinking of the N~,i,j's as gates, this happens 

whenever a pair (or more) of balls y~ and yJ attempts to simultaneously pass a 
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gate. Now one of these (yJ, say) is a trace of the other. The idea is to allow yJ 

to enter Aj first and then hold yi at the gate Ge,i,j until we can r e t a r g e t  by 

appointing a t race  yk in place of yJ. Then the new pair yi, yk can pass together 

at the next N~,i,j-expansionary stage. 

Surprisingly, this local action is enough to allow one to embed M5. We now 

turn to some details. 

At stage s + 1 we say a ball y r equ i r e s  a t t e n t i o n  if 

(2.5) y is the least ball at gate G~,i,j and e(e, i, j, s) > mg(e, i, j, s), 

or 

(2.6) y is the least ball above hole H~,i and ~,8(Y) = 0. 

We say that  P~,i r equ i r e s  a t t e n t i o n  if some ball associated with P~,i requires 

attention, or P~,i is not met and there is no ball above hole H~,i. 

CONSTRUCTION, STAGE 8. STEP 1: Find the highest priority requirement, 

and then, if relevant, the highest priority ball that  requires attention. Cancel all 

lower priority balls on the surface of the machine. Adopt the appropriate case 

below. 

CASE 1: (2.5) holds: 

ACTION: Allow y and all its descendents via tracehood (i. e. all later (= larger) 

balls in the same entourage as y) to drop to the first unoccupied gate Gp (if 

such a gate exists). Then put all of these balls except the largest one into corral 

Cp, and put the largest (=last) one (which will be the most recently appointed 

descendent) at gate Gp. If no such gate exists, put all the balls of this set into 

their respective target sets. In this case, if y is a follower, declare that  P~,i is met 

and cancel all balls associated with P~,i. Otherwise we claim that  

(2.7) I f  y is a trace, it is the trace of some ball z in a corral Ct and, furthermore, 

Gt is empty. 

Given (2.7), remove z from Ct and put it at gate Gt. 

CASE 2: (2.6) holds: 

ACTION: Allow y and all its descendents to drop from the hole H~,i and along 

the chute to the track, and then proceed as in Case 1. 
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CASE 3: Pe,i has no ball above He,i: 

ACTION: Appoint a new fresh number (x = (e, i, s), say) and place it above 

hole He#. Label x by x~,~ where n = 0 if P~# has no uncancelled followers and 

n is the number of uncancelled followers previously assigned otherwise. 

STEP 2: Trace appoinr, ment.  At the end of step 1 give a trace to each number 

on the surface currently without a trace. Use some large fresh number. Traces 

are given according to the following rule. If y is targeted for Aj and y needs a 

trace then we claim that  

(2.8) y is either at  a hole He,p or y is at a gate Ge,p,q. 

Furthermore we claim 

(2.9) i f y  is at a gate or a hole, then y will either be alone, or a member  of a 

j, k - s t r e a m  at the gate or hole. A j ,  k-stream is a collection of  balls, each related 

to the next by tracehood with y at the end, each alternatively targeted for Aj  

then Ak. 

Thus a (1, 2)-stream would, for example, look like 

t l ,  2 1 j tnq-1, tn+2, � 9  tnTm ~ y.  

If y is a member  of such a j ,  k-stream, target y 's  new trace for Ak. Otherwise, 

if y has no trace and y is at a gate Ge,p,q, target y 's  trace for k r p, q and k # j ,  

and if j r p, q then pick k = p. Finally, if y has no trace and is at a hole He,p 

target y 's  trace for any k # j (since y will be a follower targeted for Aj) .  

2.10 CLAIM: I r a  gate or hole has a i , j - s tream at the end of step 1, then it has 

an i, j -s tream at the end of step 2. 

END OF CONSTRUCTION. 

The following Lemma is easily established by induction. 

2.11 LEMMA: 

(i) All the claims (2.7)-(2.10) made in the construction hold at each stage s. 

(ii) A t  any stage s f i x ,  y1, ....,y~ is an entourage of  balls (with Yl a trace of  

x, and Yj+I a trace of  y j )  which is on the surface at stage s, then either 

all o f  x, yb... . ,y,~ are in a hole, or there exist il < i2 < . . .  < ik and 

j l  > j2 > "'" > jk such that 

the balls in {x, yq: q < il} are in corral Cjl , 
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the balls in {yq: il <_ q < i2} are in corral Cj2 , 

the balls in {yq: ik-2 <_ q < ik-1} are in corral Cj~_~, and 

the balls in {yq: ik-1 <_ q <_ ik} are at gate Gj~_ 1. 

229 

2.12 LEMMA: Only finitely many balls associated with a given follower receive 

attention. 

Proo~ There is nothing to prove unless the ball leaves the hole. Suppose 

x, Yl, ...., Yn leave H~,i. Now either they enter their respective target  sets (done) 

or they get placed in a corral C~,, associated with a gate G~ 1 with the last yn, 

placed at gate G~I. Note that  no more balls associated with x receive attention 

unless yn moves from gate G ~ .  Now there are two possibilities. The first is that  

y~ actually enters its target set at some stage s~, at which point, by (2.11), we 

know that  x, yl, ..., yn-1 will be the only balls associated with x currently on the 

surface, and that  Y~-I will be placed at G~ 1 . We can then argue a for t io r i  for 

Y~-I in place of Yn. The other possibility is that  yn does not enter its target  

set. But this means that  either it never leaves G~  (done) or it gets cancelled 

(cancelling x) or it gets stuck at a gate G~ 2 or corral C~ 2 for some e2 but with 

e2 < el. Repeating this reasoning at e2 and using the fact that  e2 < el we see 

that  the process must stop. If y~ is never cancelled, some descendent of y~, or 

y~ itself, must get stuck forever at a gate G~j for some ef <_ e2, and when this 

ball gets to G~• all balls associated with x will cease receiving attention. | 

2.13 LEMMA: If  a gate Gq has permanent residents, these permanent residents 

are an i, j-stream of a single ball y (for some i, j, y ), and, in particular, a11 have 

the same priority. 

Proof'. When a ball moves it cancels all lower priority balls. Balls only stop at 

unoccupied gates. | 

2.14 LEMMA: All the P~,~ receive attention at most finitely often and are met. 

Proof" By induction: Assume the lemma for all Pq with q < (e, i). Let so 

be the least stage by which all balls currently associated with Pq are in their 

final positions, and Pq does not receive attention after stage So. [So all that  can 

happen is that  various entourages get longer, but no balls move.] 
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Assume P~,i fails to be met,  arguing by the minimality of So, we can suppose 

that  Pe,i has no uncancelled followers at stage So, but is given one above hole H~,i 
at stage so + 1. Since such a follower x0 is uncancellable (assuming P~,i fails to 

be met), since Xo fails to succeed in meeting P~,i, it must get stuck permanent ly  

at a gate Gq or at a corral Cq for some q < (e, i). If  it gets stuck at a corral, it 

must be because some descendent of x gets stuck at a gate Gq for some q~ _< q. 

Thus x 's  failure to meet P~,i causes 

(2.15) a gate  Gq t'or some q < (e, i) to be permanently occupied by either x or 
a descendent of x. 

Note that  after the stage Sl when the relevant gate first gets its permanent  

resident associated with x, no ball associated with x ever again moves. (They 

are all in corrals waiting for this permanent  resident to move.) I t  follows that  no 

follower appointed to Pr after stage Sl can be cancelled by the x-entourage. One 

sees that  the first follower Xl appointed to P~,i after Sl must have a s tatement  

analogous to (2.15) applying to it or one of its descendents at some gate Gq,. But 

since Gq is occupied and balls don ' t  stop at occupied gates, we see that  q~ ~ q. 

But now it is clear that  since there are only (e, i) many gates below H~,i some 

follower of P~,i must succeed. | 

2.16 LEMMA: All the Ne,i,j are met. 

Proof'. For an induction, suppose So is a stage by which all the Pq for q < {e, i, j )  

have ceased acting, in the sense that  Pq never again receives attention. Suppose 

that  r -- r  = f total. We show how to compute f(x)  recursively. 

First, let sl  > So be a stage such that,  for all gates Gq with q < {e,i,j), if Gq 
has any permanent  residents, it has one by stage sl.  Now, given x, to compute 

f (x )  find a stage s = s(x) > sl such that  

(2.17) (i) ~(e,i,j,s) > x. 
(ii) For all q <_ (e, i, j}, if Gq has any residents at  a11, it has permanent 

residents. 

Note that,  from the assumption that  ~ ( A i )  = r (i) must occur cofinitely 

often. We can compute s(x) recursively from the parameters  Sl and the least 

permanent  residents of the relevant gates below G~,i,i, provided that  we argue 

that  (2.17) (ii) occurs infinitely often. To see this last claim, suppose t > Sl. 

We claim that  (2.17) (ii) will occur for some stage u > t. If  (2.17) (ii) does 

not hold at stage t, then there must be some ball at or below gate G~,ij that  is 
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not a permanent resident. The highest priority such ball must either enter its 

target set, or get cancelled. If the former, then at that stage (2.17) (ii) must 

hold (its movement cancels lower priority balls); if the latter, then at the stage 

it is cancelled either (2.17) (ii) holds, or a ball of higher priority that  is not a 

permanent resident of any gate or corral must be below G~,i,j. But now we can 

apply a similar argument to the new ball and again appeal to the wellordering of 

the priority ordering. Thus (2.17) (ii) holds. 

Now the argument is straightforward. At stage s we have 

(2.18) ~,~(A~,~; x) = r x). 

We claim the following. 

(2.19) For a11 stages t > s, one of the following holds: 

�9 ~,t(A~,t;x) = r or ~ , t (A j , t ; x )  = r 

And so furthermore both of the statements of (2.19) will hold at stages where 

~(e, i, j, s) > me(e, i, j, s), i.e. when the gate opens. 

Suppose that  (2.19) fails. Let w be the first stage after s at which it fails. 

Some number must enter Ai or Aj at stage w; say the smallest such number is 

y and it enters Aj. Consider the stage v _< w at which y passed gate Ge,i,j. If 

the gate Ge,i,j had been occupied at v, it would have been occupied by some 

ball z of higher priority than y which reached the gate at a stage u < v. By the 

leastness of w, (2.19) held at u. All balls of lower priority than z were cancelled 

at stage u and as z is still at the gate at stage v (when y went by) and indeed 

still there at stage w (since otherwise y would have been canceled), no ball of 

higher priority has moved since stage u. As all numbers appointed after stage 

u (including y) are large (and so larger than the r use at u), no numbers less 

than the use of the computation verifying (2.19) at u have entered either set by 

the end of stage w and so (2.19) would hold then contrary to o u r  assumption. 

On the other hand, if Ge,i,j was empty when y reached it, y stopped at the gate 

and when it passed r = r = r Now when y 

(which is targeted for Aj) passes Ge,~,j it is a member of a j, k-stream and so 

only numbers targeted for Aj or Ak pass the gate but none targeted for Ai. All 

balls of lower priority are cancelled at v, none of higher priority have moved by 

w, and all appointed in between are larger than the ~r use from Ai at v. Thus, 

no changed has occurred in A~ on this use from stage v to the end of stage w and 

so r x) = ~,s(A~,8; x) as required for the desired contradiction. | 
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2.20 LEMMA: Ai ~_T Aj • Ak for i r j r k. 

Proof'. To decide if x E Ai go to stage x + 1. If x q~ Ai,x+l and x is not currently 

a trace or a follower targeted for Ai, x ~ Ai. If x is a follower or a trace, then as 

x is alive at stage x + 1 it has a trace tl targeted for one of Aj or Ak if tl q~ Aj 

and tl  ~ Ak then x ~ Ai. However, if t l  enters its target set, then either x enters 

at the same stage, or it has been in a corral C~1, is placed at gate Gel and gains 

a new trace t2. If t2 enters its target set then x will actually move to a new gate 

G~ 2 with e2 < el. It  follows that  only finitely many traces can be appointed for 

x as traces are only changed if the previous trace enters its target  set, and hence 

Ai ~_T Aj G Ak. | 

2.21 Comment: The above proof is transparently amenable to high permit t ing 

in the same way as, say, the minimal pair. As in Cooper [8], we use upper and 

lower gates to add "e-dominant permission" for leaving gates. (See Cooper [8] 

or Soare [36], page 222, Ex 2.15 for further details.) The point here is that  high 

permission -- "almost all" permission. That  is, as a corollary to the construction 

we see that  below any high r.e. degree one can embed M5 preserving O. (This 

result was proved in Weinstein [39] by a somewhat different construction. See 

also Shore-Slaman [34] for another approach to high permitting.) This leads one 

to conjecture the following. 

HIGH EMBEDDING CONJECTURE: I lL is embeddable into R (preserving 0), then 

L is embeddable below an arbitrary high r.e. degree (preserving 0). 

Of course the results of the present paper  support  our other conjecture: 

NONLOW2 EMBEDDING CONJECTURE: If L is embeddable into R, then L is 

embeddable below an arbitary nonlow2 r.e. degree. 

3. T h e  main  result  

3.1 THEOREM: Suppose that B is a nonlow2 r.e. set of degree b, then there 

exists an embedding of M5 into the degrees below b. 

The main additional ingredients to the construction of w are (i) the use of 

"nonlow2" permit t ing us to enable the construction to work below b, and (ii) 



Vol. 94, 1996 LATTICE EMBEDDINGS 233 

the addition of a set C for the 0 of the M5 allowing us to "shorten" our tracing 

procedure when waiting for permission from B. 

The key to "nonlow~" permitting is the following: 

(3.2) a degree b is nonlow2 iff for every function h ~--T ~' there is a function g 

recursive in b such that g is not dominated by h. 

In the study of the global degrees, or even those below 0', (3.2) is used as 

follows: relying on specific properties of the requirements to be met, one defines 

"in advance" a function h which gives an appropriate "search space" within 

which one should search for witnesses to satisfy the relevant requirements. Due 

to the specific nature of the requirements in question, it will be the case that 

h _<T 0'. The idea is to then use g to b-recursively bound searches and make the 

construction an oracle one recursive in b. By the way h and g are constructed, 

(3~ > h(s)), so we can guarantee, with a priority argument, that all 

requirements get met. 

In [14], the authors introduced techniques to "fully approximate" the above 

method so as to allow it to work in the r.e. degrees. Specifically, the natural idea 

is to approximate h and g via the limit lemma. Now we are given an r.e. set B and 

a "witness" function h ~T 0 t. We use a recursive approximation h(x, s) to h such 

that  h(x) = tim~ h(x, s) and view g as F(B).  Thus Fs(B~: x) admits a suitable 

approximation g(x, s) with lim~ g(x, s) = g(x). As we observed in [14], the serious 

obstacle we must overcome is that,  not only must the construction be recursive 

in B, but additionally the sets constructed must be recursively enumerable. 

To facilitate this procedure we require that  our recursive approximations h(x, s) 

and g(x, s) have certain properties. In particular, since we will only be concerned 

with values where g(x) is bigger than h(x), we can always presume approxima- 

tions to B, g and h so that the following hold. 

CONVENTIONS: 

(i) x) > h(x, x). 
(ii) I f  g(x, s + 1) ~ g(x, s) then 3z(z E B8+1 - Bs) and z < g(x, s). 

(iii) I f  g(x, s + 1) ~ g(x, s) then g(x, s + 1) > h(x, s + 1). 

(iv) g(x, s) and h(x, s) are monotonic in both variables. 

(v) Ifg(x, s) # g(x, + 1) then 9(x, s + 1) = 

(vi) g(x, s + 1) r g(x, s) for at least one s. 

In our specific construction, h will be generated by considering the witnesses for 
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the "Friedberg" type requirements, together with the nature of the permissions 

needed for the relevant balls to move down the machine. We will code all such 

behavior into h. 

Turning now to the construction at hand, we must build A0, A1, A2, C all 

recursive in B such that, for i ~ j ~ k, Ai _<T Aj @ Ak @ C and to meet the new 

requirements 

Pe,i: r r Ai, 

N~,i,j: r @ C) = ~ ( A j  @ C) = f total implies f _<T C. 

Here the degrees of C, Ai = Ai @ C and A0 @ A1 �9 A2 form the embedding 

of M5 below b. The construction is almost the same as the one for embedding 

M5 given in the previous section. Of course, there are the obvious changes 

caused by having C in the oracles. In particular the definitions of the length of 

agreement functions g, ml use Ai @ C in place of Ai (for i = 0, 1, 2). In addition, 

we add a "permitting bin" to the machine. When, in the previous construction, 

any sequence of balls (all part of the entourage of a single follower x) would be 

allowed to fall through the gates and enter their respective target sets, we now 

put them into the permitting bin and add a trace targeted to C to the end of the 

sequence and wait for permission from B in the form of a change of g(n, t) where 

n is the "permitting number" assigned to x. While we are awaiting a permission, 

the rest of the elements of x's entourage sit at their current places in the corrals 

and no action is taken for them. When permitted in this way, we will put all the 

balls in this sequence into their target sets and resume our previous activity for 

the last ball of the entourage still on the surface of the machine. It will roll out 

onto the gate for its corral which will necessarily be unoccupied: If it had been 

occupied by a ball of lower priority the ball would be cancelled when we put the 

numbers into their target sets. If it is occupied by a ball of higher priority which 

arrived at the gate after these balls, then they would have been cancelled along 

with the ones now in the permitting bin. If the higher priority ball was at the 

gate when our ball passed, no elements of its entourage stopped in the corral. 

Formally, modulo the definition of h (and therefore with g unspecified), the 

construction runs as follows: 

At stage s + 1 we say a ball y requires a t t en t ion  if one of the following 

pertains. 

(3.8) For some n, y is the least number in the permitting bin with permitting 
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number n and g(n, s + 1) ~ g(n, s). 

(3.9) y is the least ball at gate G~,~,,j and ~(e, i, j, s) > m~(e, i, j, s). 

(3.10) y is a follower of P~,i at hole H~,i and r y) = Ai,8(y) = O. 

We say that  the requirement P~,i requires attention at s if either some ball y 

associated with P~,i requires attention, or 

(3.11) P~,i is not currently met  and P~,i has no foItower at  hole H~,i. 

CONSTRUCTION, STAGE s. STEP 1: Find the highest priority requirement 

P~,i, then the highest priority ball y (if relevant) that requires attention. Cancel 

all lower priority balls on the surface. Adopt the appropriate procedure of the 

ones listed below. 

CASE 1: (3.8) holds: Put  all balls with permitt ing number n that are now in the 

permitt ing bin into their target sets. I f  this meets the requirement (i.e. a follower 

of P~,i is put  into its target set Ai) do nothing else. Otherwise, find the corral 

Cd containing the ball x for which y is the trace. Put  the ball at gate Gd. (We 

here are claiming that the analog of  (2. 7), call it (2. 7 )  that the ball x of  which 

y is a trace is in some corm Ca and that Ga is empty.) 

CASE 2: (3.9) holds. A11ow y and all its descendents via tracehood (i.e. all later 

(= larger) balls in the same entourage as y) to drop down to the first unoccupied 

gate Gp (if such a gate exists). Then put  all of  these balls except the largest one 

into corral Cp, and put  the largest (--last) one (which will be the most  recently 

appointed descendent) at gate Gv. I f  no such gate exists, put  all the balls of this 

set into the permitt ing bin and attach a trace t C targeted for C to the last ball 

in this set. 

CASE 3: (3.10) holds. Release the balls in H~,i from the hole and let them enter 

the chute. Now proceed as in (3.9). 

CASE 4: (3.11) holds. Suppose there are n as yet uncancelled followers of  P~,i. 

Appoint  a large fresh follower x = xe,ni at hole He,~ and let x 's  permitt ing number 

b e n + l .  

STEP 2: At the end of step 1, give a new large trace z to each ball y on the 

surface which does not have a trace and is not targeted for C, as in w The trace 

z has the same permitting number as y. 
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END OF CONSTRUCTION. As in w the reader can easily see that (2.7~)-(2.10) 

and (2.13) still hold, and that (2.11)(ii) holds with the adjustment that (yq: ik-~ 

_< q _< ik} can be either at gate Gjk_lor in the permitting bin. However, the proof 

of (2.14) now needs the definition of gi n, s) which depends on the as yet unspeci- 

fied definition of h(x, s). Before we can verify the remainder of the construction, 

we need to describe the required function h. 

(3.12) DEFINITION OF h (MULTIPLY INDUCTIVE PERMITTING). We will define 

a family of functions hk uniformly recursive in 0 ~, so that for each requirement 

P~,i, there will be some k (that will depend on the stage s~,i after which no 

action is taken for any requirement of higher priority and by which each gate 

of higher priority with permanent residents already has one) such that if g is 

not dominated by hk then we will satisfy P~,i. (When we say that a family of 

functions (or sets) 3 c is uniformly recursive in 0 ~, we mean that  there is a set 

A recursive in 0' such that ~ = {(e}~ E A}.) The actual single function 

recursive in 0' that  we need will then be any one dominating all the hk. To 

motivate the definition of this family of functions consider the permissions that 

would be needed to satisfy a requirement Pr with only o n e  gate G below it 

by its first follower x~, l I  appointed at a stage after all action for higher priority 

positive requirements has ceased and such that  if G has a permanent resident it 

already has one. 

Suppose x~, 1 is realized at stage s and its entourage at the beginning of stage 

s is 

(3.13) t l , 1 , . . . , t l ,m  with m < s. 

If G is now occupied, we put the entire entourage with a trace tc~+l at the end 

targeted for C into the permitting bin. In this case, we need only one permission 

via a change in g(1,t)  after s to satisfy P~,i. Otherwise, tl,m is put at G and the 

rest of the entourage is placed in G's corral. We now wait for a stage Sl at which 

G opens. At that time we put the final segment of the entourage beginning with 

tm into the permitting bin with a trace t C added to the end. We then would 

need g(1, t) to change once after s to allow tl,m to t C to enter their target sets. 

Should this occur, we would take tl,m-1 out of the corral and place it at gate G 

where it would begin to acquire a sequence of traces continuing its entourage. At 

the stage at which the gate G reopens tl ,m-1, together with the later elements 

of its entourage (including a new trace targeted for C at the end), enters the 

permitting bin. We would then need another permission to allow Q,m-1 to enter 
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its target  set and continue the procedure. Thus in all we would need at most s 

many permissions from g(1, t) if they came at the required times. 

Our plan is to define an appropriate function h in our family so that  the 

definition of h(1) forces enough changes at the required times in g(1, t) (assuming 

g(1) > h(1)). If  we could define the recursive approximation to h(1) along with 

the construction, we could increase it every time we wanted a permission. When 

we get the permission, we then wait until we want another one, say at t, to 

again increase h(1). As we would make h(1) larger than t at t, the nature of 

our approximation to g (property (v)) would force g(1, v) to change after t as 

required. Such a definition of h seems to need the recursion theorem. However, 

as explained in Downey and Shore [14], we cannot simultaneously define h with 

the construction and still get to use a g recursive in B as required. Thus we 

must define a family of functions in advance which will include all possible ones 

desired in the construction. We do this in two stages. The first step is to define a 

family of functions so that  for requirement P~,i there is a function f~,~(n) in the 

family that  bounds the number of changes needed to satisfy the requirement via 

(some version of) its n th follower x~, n~ . The second phase of our definition will 

circumvent the apparent need for the recursion theorem by defining a family of 

auxiliary r.e. sets so that  for each e, i there will be a member  of the family Ve,i 

so that  at most f~,~(n) many numbers are enumerated in its n th column, V[n ] 

We will then let h~,~(n) be the last stage at which a number is enumerated in 

V[~ ] The V~,i that  we need is the one that  gets an element enumerated in its 

n t h  column when we need a change in g(n, t) to make progress on the current 

version of Pe,i's n th witness x~, n~ . As enumerating such a number at a stage v 

forces h~,i(n) to be bigger than v, and g(n, t) can become larger than v only at 

stages larger than v, we would have to get the desired change at a stage when we 

could use it (i. e. after stage v). The fact that  we have a family f~,i of functions 

uniformly calculable in 0 ~ bounding the number of times this can happen allows 

us to make the required functions h~,~ uniformly recursive in 0 ~. 

To define the first family of functions, let us return to the example of a re- 

quirement Pe,i and a stage u = s~# after all action for higher priority positive 

requirements has ceased that  has only o n e  gate G below it which already has 

a permanent  resident if it ever gets one. We want to define a class of functions 

uniformly recursive in 0 ~ which will include one f~,i,~ = f such that  f ( n )  bounds 

the number of times we need permission to satisfy P~,i by a version of the n th 
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follower x~, n appointed after stage u. We describe these functions in terms of a 

bound on the number of times a recursive approximation f(n, s) to f(n) changes. 

Of course, we must arrange that the family of functions so described is uniformly 

recursive in 0 I. Now as we described above, the first witness xi,1 appointed at 

s > u is never cancelled and, once realized at sl,  can act though any of its de- 

scendants at most Sl many times. Thus the approximation f(1,  s) changes at 

most once. A version of the second witness x~, 2 can act in the same way but can 

be cancelled (along with all its descendants) when we act for x~, 1 or one of its 

descendants. Thus the value of f(2,  s) can change f (1)  many times. Similarly, 

the value of f(n+ 1, s) can change f(n) many times. Thus we can specify a family 

of functions ~ which are uniformly recursive in 0' and include one f such that  

f(n) bounds the number of times we might have to act for any number appointed 

as x~,n or its any of its descendants: 

~- = {fl f(0) = 1 A (3 recursive f(n,s))(Vn > O)(limf(n,s)) = f(n) A 

I{slf(n+ 1, s) # f(n+ 1 ,s+  1)1 < f(n)}}. 

It is clear that given any partial recursive function ~ we can recursively in 

0' calculate, for each n > 0 in turn, y(n) = lim r s) and then verify that  

r  + 1, s) does not change more than f(n) many times. As long as r does not 

fail the test in terms of the number of times it changes, we successively calculate 

the values of f(n). If r ever fails by changing too often or being undefined, we 

declare f to be constant from that n onward. Thus, we may compute a family 

of representatives of ~" uniformly recursively in 0 ~. (We remark that  it is clear 

that  we can go effectively in 0' from an index for r as a partial recursive function 

to an index of f as a function recursive in 0 I. The situation for ~ below is the 

same.) 

Consider next a requirement P~,i with two gates G2, G1 below it. Once again, 

the first witness x~, l i  appointed after all requirements of higher priority have 

ceased acting (and the gates have their permanent residents) is never cancelled. 

It can be realized at a stage Sl when it and its entourage of at most Sl many 

element fails down to G2 (if unoccupied, the worst case scenario). One element 

may sit at the gate while the others are put into the corral. While sitting at 

the gate G2 a descendant of x~, l i  gets its own entourage of traces. This trace 

appointment procedure stops when the gate opens say at s1,1 The descendant of 

and the later part of its entourage (of size at most s1,1) fall down to the next Xe,1 
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gate G1 (again, if unoccupied). There they are faced with the same situation as 

a ball and its entourage arriving from the hole with only G1 below it. In other 

words, each member of the entourage in turn rolls out to the gate and waits for it 

to open (at which point it is put into the permitting bin together with the latter 

part of the entourage ending with a trace targeted for C). Later followers Xe~n 

of P~,i may follow the same route except that they (and all their descendants) 

for m < n or one of its may be cancelled each time action is taken for some xe, m 

descendants. Thus to measure the number of changes, f (n ) ,  needed for Xe,n, w e  

calculate in terms of a recursive approximation f (n ,  s) as follows: 

f (1 ,  s) changes (from 1 to sl)  when x~, 1 is realized at Sl. Thereafter, it may 

change sl many times. 

f(2,  s) can go through the same changing procedure as did f(1,  s) each time 

f(1,  t) changes. 

f (n ,  s) can go through the same procedure as f (1 ,  s) each time f ( i ,  t) changes 

for any i < n. 

We thus see that  there is a function g �9 9 v such that f (n)  = g(2n). Similarly, if 

there are m many gates below P~,~ , f (1)  changes once at sl when realized and 

then sl many times at Gm for each of which it may change again at Gin-1 etc. 

In general, then a function f (n)  bounding the number of actions needed for a 

P~,~ with m gates below it can be given by f (n)  = g(mn) for some g �9 ~'. We 

therefore define our first family of functions G as follows: 

G = {gl3f �9 ~r3mVn(g(n) = f (mn)} .  

As (a set of representatives for) ~ is uniformly recursive in 0', it is easy to see 

that  so is (one for) G. 

For the next step, we define a class 13 of r.e. sets which, for each requirement 

Pe,i, will include one W that  enumerates a number into its n th  column W[ n] 

whenever a descendant of some x~, n needs permission to enter Ai: 

V = {W~l(3g �9 G)(Vn)(IW/"]I < g(n)}. 

Once again, it is easy to construct a family of representatives of V which is 

uniformly recursive in 0 ~. Again, when we say that  V, which happens to be a 

family of r.e. sets, is uniformly recursive in 0 ~, we mean, as above, that  there is 

a set A recursive in 0' such that ~ = {{e}~ e �9 A} and each W C V is r.e. but 

not that  we can find an r.e. index for it uniformly in 0 ~. (Again we try each W~ 
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and each g C G and when the pair fails the test we switch to the empty set. This 

gives us a set recursive in 0 ~ which is r.e. but not, uniformly, its index as an r.e. 

set.)) We can then define our final family of functions which are again uniformly 

recursive in 0~: 

Tl = {h l (3W �9 "V)(Vn)(h(n) is the last stage at which 

a number is enumerated in W['q)}. 

Note that  for ~ we again use guesses at the r.e. index i for each W �9 ~ and 

when one fails we make the corresponding h constant. 

Our required function h can now be taken to be any function recursive in 0 ~ 

which dominates every function in ~ .  We then choose a g recursive in B which 

is not dominated by h to use in the construction described above. We can now 

argue that  the required lemmas are correct. 

3.14 LEMMA: Each requirement P~,~ (including the balls associated with it) 

receives attention at most finitely often and is met. 

Proof: By induction, we may assume that  there is a stage u such that  no require- 

ment of higher priority (or ball associated with it) requires at tention after stage 

u. We may also assume that  all gates of higher priority that  have a permanent  

resident have one by stage u. As in the basic construction (2.14) no ball asso- 

ciated with Pe,i can hereafter be permanently stuck at any gate. Some of them 

may, however, be stuck in the permitt ing bin forever. We assume by induction 

that  the action for descendants of any follower labelled x~e,k, k < m are finite. 

Consider then the history of a follower x~, m after a stage s by which all action 

for descendants of followers xe,i for k < m have stopped. Once a follower xe, m l  is 

appointed after s, it is never cancelled. If x~, m is never realized, no further action 

is taken for P~,~ which is then satisfied. Otherwise, it is realized. Note that ,  

when realized, all lower priority balls are cancelled and all later ones appointed 

are larger than  the C use of the realizing computation. No ball of higher priority 

ever enters C (or any other set) by assumption. Thus once realized after s, the 

associated C computat ion r x~,m) = 0 is correct forever. Now, the follower 

x~,mi either eventually enters Ai and so satisfies Pr (causing all action for Pc# to 

cease) or it or one of its descendants is permanently stuck in the permit t ing bin. 

We must show that  not every x~, m can have a descendant stuck in the permit t ing 

bin. 
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By our choice ofg  there is an m > u such that  g(m) > h(m) where h E 7-/is the 

function associated with the r. e. set W which gets a number enumerated in its jth 

column whenever a ball in the entourage of a follower x~,j enters the permitting 

bin. Our analysis above of how often this can happen and the definitions of 

9 v, G, ~" and 7-/ guarantee that there is such a function h E 7-/. We now claim 

that  every time a descendant of some follower x~, m l  enters the permitting bin, 

it is later permit ted and so enters its target set. This clearly suffices. If some 

descendant y of a follower x~,,~i enters the permitting bin at t then an element 

is enumerated in W['q at t. Thus h(m) > t. As g(m) > h(m), g(m) > t. By 

convention (v) on our recursive approximations to g, there is a v > t such that 

g(m, v) ~ g(m, v + 1). Our construction then guarantees that y would then be 

put into A~ as required. | 

3.15 LEMMA: All the N~,i,j are met, i.e. r • C) = ~ ( A j  @ C) = f total 

implies f ~T C. 

Proof: The argument is very like that for (2.16) with some changes to take into 

account the new set C being constructed at the bot tom of the lattice. Let so be a 

stage after which no ball associated with any requirement of higher priority than 

Ne,i,j ever receives attention. Suppose that ~ (A~  ~ C) = ffPe(Aj (~ C) -- f total. 

We show how to compute f (x)  recursively. First, let sl > So be a stage such 

that,  for all gates Gq of higher priority than N~,i,j (i.e. with q < (e, i , j)),  if Gq 

has any permanent residents, it has one by stage sl. Now, given x, to compute 

f (x)  find a stage s = s(x) > sl such that  

(i) $(e, i, j, s) > x 

(ii) For all q < (e, i, j} if Gq has any residents at all, it has permanent residents. 

(iii) Every ball in the permitting bin at s which is less than the use of either 

computation at x, r162 GC; x) and r @C; x), remains there forever. 

Note that  any ball y in the permitting bin has a sequence of traces ending with 

one t c targeted for C. The entire sequence of elements enter their respective tar- 

get sets simultaneously and so y leaves the permitting bin (necessarily to enter 

its target set) iff t C E C. Thus, given the parameters sl and the least permanent 

residents of the relevant gates below Ge#,j, we can determine recursively in C if 

a stage s satisfies the required conditions. We must now argue that ,  for each x, 

(i)-(iii) are simultaneously satisfied some stage s and that the procedure de- 

scribed correctly computes f(x) .  
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For the first claim, note that,  as (~(Ai @ C) = Ce(Aj @ C), we may assume 

that  g(e, i, j ,  s) > x and (iii) holds for every s > s2 for some s2 > Sl. If (ii) does 

not hold at some stage t > s2, then there must be some ball y < Ce,t(Ai @C; x) or 

Ce,t(Aj �9 C; x) at or below gate G~,ij (perhaps in the permitting bin) that  is not 

a permanent resident. The highest priority such ball must either enter its target 

set, or get cancelled. If the former, then at that  stage (i)-(iii) must hold (its 

movement cancels lower priority balls none of higher priority could pass G~,i,j 

without cancelling y); if the latter, then at the stage it is cancelled either (ii) 

holds, or a ball of higher priority than y that  is not a permanent resident of any 

gate or corral must be below G~,i,j. But now we can apply a similar argument to 

the new ball and eventually appeal to the well-ordering of the priority ordering 

to see that  this process must terminate at a stage at which (i)-(iii) hold. 

Now we must argue that  at any stage z satisfying (i)-(iii), Ce(Ai @ C; x) = 
�9 e(Aj @ C; x) -- f(x) .  At stage z we have 

r �9 C~;x) = r @ C~;x) 

and C is correct on the associated uses (r @ Cz; x) and r @ C~; x)) 
as any trace targeted for C is always in the permitting bin and any appointed 

later will be larger than this use. 

We claim the following. 

(*) For all stages t _> z, one of the following holds: 

Ce,t(Ai,t; x) -: r x) and C is correct on Ce,t(Ai,t @ Ct; X), 
r x) = r x) and C is correct on r �9 C; x). 

Suppose that  (*) fails. Let w be the first stage after z at which it fails. Some 

number must enter Ai or Aj at stage w; say the smallest such number is y and it 

enters Aj. (The smallest number going into some set at any stage cannot enter 

C by construction.) Consider the stage v _< w at which y passed gate G~,i,j. If 

the gate G~,i,j had been occupied at v, it would have been occupied by some 

ball q of higher priority than y which reached the gate at a stage u < v. By the 

leastness of w, (.)  held at u. All balls of lower priority than q were cancelled 

at stage u and, as q is still at the gate at stage v (when y went by) and indeed 

still there at stage w (since otherwise y would have been canceled), no ball of 

higher priority has moved since stage u. As all numbers appointed after stage u 

(including y) are large (and so larger than the r use at u), no numbers less than 
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the use of the computation verifying (*) at u have entered any set by the end of 

stage w and so (*) would hold then contrary to our assumption. On the other 

hand, if Ge,i5 was empty when y reached it, y stopped at the gate and when it 

passed ~,v(Ai,~ �9 Cv;x) = r ~ C~;x) = r @ Cs;x). Now when 

y (which is targeted for Aj) passes G~,i5 it is a member of a j ,  k-stream and 

so only numbers targeted for Aj or Ak pass the gate but none targeted for Ai. 

All balls of lower priority are cancelled at v, none of higher priority have moved 

by w, and all appointed in between are larger than the r use from Ai at v. 

Thus, no change has occurred in Ai on this use from stage v to the end of stage 

w. Moreover, even if it was the Aj side of the computation that  was C-correct 

at v, that  guarantees C-correctness up to y while the cancellation procedure at 

v guarantees that  no traces of lower priority targeted for C are left between y 

and r @ C~; x). We claim that  there are also none of higher priority in 

this interval. Suppose there were one r. If r had been appointed before y then 

y would be bigger than r contrary to hypothesis. On the other hand, if y was 

appointed before r then it would be cancelled when r is appointed and so never 

enter Aj. Thus at w we would satisfy (*) via the r | C; x) computation for 

the desired contradiction. | 

3.16 LEMMA: Ai ~_T Aj @ Ak @ C for i r j ~ k. 

Proof'. The proof is the same as for (2.20) except that  the trace t may also be 

targeted for C and we must check if t E C as well. (This case arises only when 

x is in the permitting bin, in which case it enters its target set only if t enters C 

and if so at the same stage.) | 

3.17 LEMMA: The sets constructed C, Ai are all recursive in B. 

Proof'. A number y is enumerated in a set at a stage s only it is a descendant of 

some follower x~,i (possibly the follower itself), necessarily with y > m, and it is 

permitted by a change g(m, s) ~ g(m, s + 1). As g(m, t) is nondecreasing and its 

final value is recursive in B, we can, recursively in B, clearly find a stage after 

which this cannot happen and so after which y cannot be enumerated. | 

Remark: Note that  the construction only needs that  b contains a function g 

that  is not dominated by h. Note that  given any particular function k --~T 0 I, 
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it is easy to construct a degree d which is low and contains a function q not 

dominated by k. Thus it seems that  a t tempts  to characterize nonlow2 by pure 

"multiple permitt ing" would seem to need a range of properties in some sense 

we do not as yet understand. Of course nonlow2 really is characterized by its 

domination properties of functions recursive in 0 I. The difficulty is in finding 

reflections of this domination in elementary properties of the structure of the r.e. 

degrees. 
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